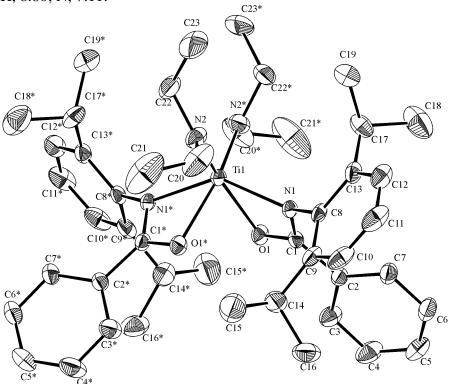
Supplementary Information for

Anti-Markovnikov Intermolecular Hydroamination: A Bis(amidate)-Titanium Precatalyst for the Preparation of Aldimines

Zhe Zhang, and Laurel L. Schafer*

Department of Chemistry, the University of British Columbia, Vancouver, British Columbia, Canada. E-mail: schafer@chem.ubc.ca


Experimental Procedures.

General. All reactions were carried out using standard Schlenk line and glovebox techniques, under an atmosphere of nitrogen, unless stated otherwise. Tetrahydrofuran and diethyl ether were distilled from sodium benzophenone ketyl under inert atmosphere. Hexanes and toluene were purified by passage through a column of activated alumina and degassed with nitrogen. C₆D₆ was degassed and dried over molecular sieves. Benzoyl chloride was purchased from Aldrich and used as received. Amines were distilled from CaH₂ under nitrogen. Alkynes were purchased from Aldrich and purified by distillation prior to use. Ti(NEt₂)₄ was purchased from Strem and used as received. proligands were prepared from appropriate amines and benzoyl chloride according to literature procedures. ¹ H, and ¹³C spectra were recorded on either a Bruker 300 MHz or 400 MHz Avance spectrometer at ambient temperature and chemical shifts are given relative to residual solvent. IR samples were either neat or were prepared as Nujol mulls on NaCl disks or KBr pellets and recorded on a BOMEM Michelson Series MB-100 FTIR spectrophotometer. Mass spectra were recorded on a Kratos MS-50 spectrometer using an electron impact (70 eV) source. GCMS spectra were recorded on an Agilent series 6890 GC system with a 5973 Mass Selective Detector. Elemental analyses and single-crystal X-ray structure determinations were performed at the Department of Chemistry, University of British Columbia.

General procedure for the preparation of bis(amidate)titanium-bis(amido) complexes.

Example: the synthesis of bis(N-2',6'-diisopropylphenyl(phenyl)amidate)titanium-bis(diethylamido), **1.** In a 100 mL round-bottomed Schlenk flask equipped with stir bar, a suspension of N-2',6'-diisopropylphenyl(phenyl)amide (295 mg, 1.05 mmol) in 20 mL anhydrous ether was added a solution of Ti(NEt₂)₄ (168 mg, 0.500 mmol) in 20mL anhydrous ether at -78 °C under N₂. The reaction solution was allowed to stir at room temperature for three hours. Removal of the solvent under reduced pressure and extraction with anhydrous hexane followed by filtration in the glove box gave a dark red solution. The solvent was removed *in vacuo* to afford a red solid, which was used as the crude catalyst without further purification. Yield: 82%. The crude product was recrystalized in hexane/benzene to afford red microcrystals. ¹H NMR (C₆D₆, 300 MHz): δ 0.83 (12H, br t, J=6.7 Hz, N-(CH₂CH₃)₂), 0.91 (12H, br d, J=6.5 Hz, CH(CH₃)₂), 1.37

(12H, br d, J=6.5 Hz, CH(C H_3)₂), 3.77-3.80 (4H, m, CH(CH₃)₂), 3.95 (8H, br q, J=6.4 Hz, N-(C H_2 CH₃)₂), 6.85-7.65 (16H, m, Ar-H); MS(EI): m/z 752 (M⁺), 680 (M-NEt₂), 608 (M-NEt₂×2); Anal. Calcd. For C₄₆H₆₄N₄O₂Ti• $\frac{1}{2}$ C₆H₆: C, 74.31; H, 8.53; N, 7.07. Found: C, 74.30; H, 8.80; N, 7.11.

Figure 1. ORTEP plot of the structure of bis(amidate)titanium-bis(amido) complex **1** at 50% ellipsoids and with selected bond lengths (Å), bond and torsion angles (deg): Ti-O(1) 2.146(1), Ti-N(1) 2.156(1), Ti-N(2) 1.899(2), O(1)-Ti-O(1*) 81.92(7), O(1)-Ti-N(1) 61.21(5), O(1)-Ti-N(1*) 88.30(5), O(1)-Ti-N(2) 159.30(5), O(1)-Ti-N(2*) 91.39(7), N(1)-Ti-N(1*) 140.42(8), N(1)-Ti-N(2) 99.21(6), N(1)-Ti-N(2*) 105.68(6), N(2)-Ti-N(2*) 101.1(1).

General procedure for the intermolecular hydroamination catalyzed by bis(amidate)titanium-bis(amido) complexes of Table 1

Example: complex 1 as the catalyst. A sealed-NMR tube was loaded with 1 equiv. (1) (20 mg, 0.027 mmol), 10 equiv. 1-hexyne (22 mg, 0.27 mmol), 20 equiv. t-butylamine (39 mg, 0.54 mmol), 10 equiv. 1,3,5-trimethoxybenzene (45 mg, 0.27 mmol) as an internal standard and approximately 1 mL C_6D_6 in the glove box. The tube was heated at 65 °C until all the alkyne was consumed. The conversion and yield were determined by comparison of the integration of the internal standard and a well-resolved signal for the product imine. When all the alkyne had been consumed, the reaction solution was treated with CH_2Cl_2 (5 mL) and silica gel (0.50 g). The mixture was stirred for 10 hours at room temperature and then filtered. The filtrate was used as a sample for the GC-MS. The ratio of the Anti-M and M was calculated by the integration of the resulting hexanal and 2-hexanone to verify the ratios determined by 1H NMR spectroscopy.

General procedure for the intermolecular hydroamination catalyzed by complex 1 of Table 2

Example: 1-hexyne reacted with benzylamine. A 25 mL Schlenk tube was loaded with complex **1** (10 mg, 0.013 mmol), 1-hexyne (20 equiv., 22 mg, 0.27 mmol), benzylamine (20 equiv., 29 mg, 0.27 mmol) and approximately 1.5 mL benzene in the glove box. The tube was heated at 65 °C for 24 hours. Then the mixture was cooled to room temperature and diluted with 10 mL anhydrous ether. LiAlH₄ (24 equiv., 12 mg, 0.31 mmol) was added and the reaction mixture was stirred for 24 hours at room temperature. Then, 0.1 mL sat. NH₄Cl was added to quench the reaction. The mixture was filtered and concentrated under reduced pressure. Flash chromatography on silica gel (eluted with ether/Et₃N=10:1) afforded the pure *N*-benzylhexylamine as the single product. Yield: 88%

N-t-butylhexylamine³ Yield: 82%; ¹H NMR (CDCl₃, 300 MHz): δ 0.85 (3H, t, J=6.8 Hz, CH₂CH₃), 1.06 (9H, s, C(CH₃)₃), 1.26-1.44 (8H, m, CH₂), 2.50 (2H, t, J=7.1 Hz, CH₂NH); MS(EI): m/z 157(M⁺), 142(M⁺-CH₃).

*N-iso***propylhexylamine**⁴ Yield: 88%; ¹H NMR (CDCl₃, 300 MHz): δ 0.85 (3H, t, J=7.1 Hz, CH₂C*H*3), 1.02 (6H, d, J=6.2 Hz, CH(C*H*₃)₂), 1.26-1.43 (8H, m, C*H*₂), 2.54 (2H, t, J=7.3 Hz, C*H*₂NH), 2.70-2.78 (1H, m, C*H*(CH₃)₂); MS(EI): m/z 143(M⁺), 128(M⁺-CH₃).

N-benzylhexylamine⁵ Yield: 88%; ¹H NMR (CDCl₃, 300 MHz): δ 0.88 (3H, t, J=6.2 Hz, CH₂CH₃), 1.24-1.54 (8H, m, CH₂), 2.62 (2H, t, J=7.2 Hz, CH₂NH), 3.79 (2H, s, Ar-CH₂NH), 7.22-7.37 (5H, m, Ar-*H*); MS(EI): m/z 191(M⁺), 190(M⁺-H), 176(M⁺-CH₃).

N-t-butyl(2-cyclohexyl)ethylamine Yield: 72%; 1 H NMR (CDCl₃, 300 MHz): δ 0.84-0.90 (3H, m, C $_{1}$ H₂), 1.07 (9H, s, C(C $_{1}$ H₃), 1.13-1.68 (11H, m, C $_{1}$ H₂), 2.53 (2H, t, J=7.3 Hz, C $_{1}$ H₂NH); 13 C NMR (CDCl₃, 75 MHz): δ 26.33, 26.63, 29.07, 33.47, 35.96, 38.78, 40.11, 50.19; MS(EI): m/z 183(M⁺), 168(M⁺-CH₃); IR (NaCl/neat, cm⁻¹): 3300 (vw, NH), 2922 (s), 1448 (m), 1232 (m), 740 (m); HRMS m/z Calc'd for C₁₂H₂₅N [M⁺]: 183.19870; Found: 183.19886.

*N-iso***propyl(2-cyclohexyl)ethylamine** Yield: 89%; 1 H NMR (CDCl₃, 300 MHz): δ 0.84-0.93 (3H, m, C $_{1}$), 1.02 (6H, d, J=6.3, CH(C $_{1}$), 1.15-1.68 (11H, m, C $_{2}$), 2.57 (2H, t, J=7.3 Hz, C $_{2}$), 1.75 (1H, m, C $_{2}$); 1 C NMR (CDCl₃, 75 MHz): δ 23.05, 26.32, 26.62, 33.47, 35.89, 38.17, 45.25, 48.82; MS(EI): m/z 169(M⁺), 154(M⁺-CH₃); IR (NaCl/neat, cm⁻¹): 3435 (w, NH), 2966 (s), 2922 (s), 1448 (m), 1174 (m), 734 (w); HRMS m/z Calc'd for C₁₁H₂₃N [M⁺]: 169.18305 Found: 169.18343.

N-benzyl(2-cyclohexyl)ethylamine Yield: 87%; 1 H NMR (CDCl₃, 300 MHz): δ 0.86-1.68 (14H, m), 2.63 (2H, t, J=7.3 Hz, C H_2 NH), 3.77 (2H, s, ArC H_2 NH), 7.22-7.31 (5H, m, Ar-H); 13 C NMR (CDCl₃, 75 MHz): δ 26.31, 26.61, 33.44, 35.74, 37.80, 47.15, 54.19, 126.81, 128.02, 128.34, 140.63; MS(EI): m/z 217(M⁺), 91(C₇H₇⁺); IR (NaCl/neat, cm⁻¹): 3300 (vw, NH), 2922 (s), 2850 (s), 1450 (m), 1120 (w), 732 (m); HRMS m/z Calc'd for C₁₅H₂₃N [M⁺]: 217.18305 Found: 217.18293.

N-benzyl(3,3-dimethyl)butylamine Yield: 95%; ¹H NMR (CDCl₃, 300 MHz): δ 0.89 (9H, s, C(CH_3)₃), 1.42 (2H, t, J=7.0 Hz, CH_2 C(CH_3)₃), 2.58 (2H, m, CH_2 NH), 3.78 (2H, s, CH_2 -Ar), 7.28-7.33 (5H, m, Ar-H); ¹³C NMR (CDCl₃, 75 MHz): δ 29.61, 30.31, 44.14, 45.75, 54.31, 126.82, 128.06, 128.34, 140.56; MS(EI): m/z 191(M^+), 120(M^+ - C_5 H₁₁), 106((M^+ - C_6 H₁₃), 91(C_7 H₇⁺); IR (NaCl/neat, cm⁻¹): 3200 (vw, NH), 2955 (s), 2912 (m),

2864 (m), 1454 (m), 1118 (w), 734 (m), 698 (m); HRMS m/z Calc'd for $C_{15}H_{23}N$ [M⁺]: 191.16740 Found: 191.16747.

4-Triphenylsiloxybut-1-yne 2 reacted with *iso***propylamine**, (eq. 1). A 10 mL Schlenk tube was loaded with complex **1** (10 mg, 0.013 mmol), 4-triphenylsiloxylbut-1-yne (20 equiv., 87 mg, 0.26 mmol), *iso***propylamine** (40 equiv, 32 mg, 0.52 mmol) and approximately 1.5 mL benzene in the glove box. The tube was heated at 65 °C for 24 hours. Then the mixture was cooled to room temperature and treated with CH₂Cl₂ (10 mL) and silica gel (0.50 g). The mixture was stirred for 10 hours at room temperature and then filtered. The filtrate was concentrated under reduced pressure and the residue was purified on silica gel (eluted with Hexane/Ether=10:1) to afford the pure 4-triphenylsiloxylbutanal. Yield: 85% (76 mg); ¹H NMR (CDCl₃, 300 MHz): δ 1.89-1.93 (2H, m, CH₂), 2.64 (3H, t, J=7.2, CH₂CHO), 3.84 (2H, t, J=6.0 Hz, CH₂O), 7.39-7.62 (15H, m, Ar-H), 9.74 (1H, s, CHO); ¹³C NMR (CDCl₃, 75 MHz): δ 25.09, 40.59, 62.78, 127.90, 130.09, 133.95, 135.31, 202.33; IR (KBr/Nujol, cm⁻¹): 1724 (s, CO), 1427 (m), 699 (s); MS (EI): m/z 346(M⁺), 345(M⁺-H); Anal. Calcd. For C₂₂H₂₂O₂Si: C, 76.26; H, 6.40. Found: C, 76.29; H, 6.46.

5-*t***-butyldimethylsiloxypent-1-yne 3 reacted with** *iso***propylamine, (eq. 1).** Same experimental procedure as above. 5-(*t*-butyldimethylsiloxy)pentanal⁶ Yield: 94% (53 mg); 1 H NMR (CDCl₃, 300 MHz): δ 0.02 (6H, s, Si(C H_3)₂), 0.86 (9H, s, C(C H_3)₃), 1.50-1.55 (2H, m, C H_2), 1.64-1.69 (2H, m, C H_2), 2.43 (2H, dt, J=7.2, 1.7, C H_2 CHO), 3.58 (2H, t, J=12.4, C H_2 O), 9.74 (1H, t, J=1.7,CHO); 13 C NMR (CDCl₃, 75 MHz): δ -5.36, 18.30, 18.61, 25.91, 32.09, 43.60, 62.57, 202.67; MS(EI): m/z 216(M⁺), 215(M⁺-H); IR (NaCl/neat, cm⁻¹): 2957 (s), 1712 (s, CO), 1265 (s), 740 (s); HRMS m/z Calc'd for C₁₅H₂₃O₂Si [M⁺-1]: 215.14673. Found: 215.14654.

Benzophenone protected propargylamine reacted with *iso* propylamine (eq. 2). The experiment was carried out in sealed NMR tube as described in the procedure for Table 1. The conversion and yield were determined by comparison of the integration of the internal standard and a well-resolved signal for the product imine at 7.67 ppm. Yield: 92%.

Trimethylsilylacetylene reacted with *iso***propylamine (eq. 3).** The experiment was carried out in sealed NMR tube as described in the procedure for Table 1. The conversion and yield were determined by comparison of the integration of the internal standard and a well-resolved signal for the product imine at 7.52 ppm. Yield: 90%.

Synthesis of (±)-6,7-dimethoxy-2-pentyl-1,2,3,4-tetrahydroisoquinoline, 6.⁷ A 25 mL Schlenk tube was loaded with complex **1** (30 mg, 0.040 mmol), 3,4-dimethoxylphenethylamine **4** (20 equiv., 145 mg, 0.80 mmol), 1-hexyne (20 equiv., 66 mg, 0.80 mmol) and approximately 2 mL benzene in glove box. The tube was heated at 65 °C for 24 hours. Then the mixture was cooled to room temperature and trifluoroacetic acid (4 mL) was added. After heating to reflux for 12 hours, the reaction mixture was treated with sat. NaHCO₃ (100 mL). The resulting mixture was extracted with ether and dried (MgSO₄). The solvent was removed under reduced pressure and the product was purified by flash chromatography on silica gel (eluted with CH₂Cl₂/MeOH=10:1). Yield:

92% (193 mg); 1 H NMR (CDCl₃, 300 MHz): δ 0.88 (3H, t, J=6.9 Hz, CH₃), 1.25-1.82 (9H, m, (CH₂)₄CH₃, NH), 2.65-3.22 (4H, m, CH₂CH₂NH), 3.82 (6H, s, CH₃O), 3.87 (1H, t, J=7.0 Hz, Ar-CHNH), 6.54 (1H, s, Ar-H), 6.59 (1H, s, Ar-H); 13 C NMR (CDCl₃, 75 MHz): δ 14.08, 22.67, 25.90, 29.58, 32.07, 36.58, 41.17, 55.51, 55.81, 56.00, 109.23, 111.76, 127.19, 131.79, 147.12, 147.17. MS(EI): m/z 263 (M $^{+}$).

References

- 1. Huang, B.-H.; Yu, T.-L.; Huang, Y.-L.; Ko, B.-T.; Lin, C.-C. *Inorg. Chem.* **2002**, *41*, 2987.
- 2. Full crystallographic data is available in the included cif.
- 3. Eggert, H.; Djerassi, C. J. Amer. Chem. Soc. 1973, 95, 3710.
- 4. Golovnya, R. V.; Zhuravleva, I. L.; Svetlova, N. I.; Grigor'eva, D. N.; Terenina, M. B.; Gutnik, S. B. *Zhurnal Analiticheskoi Khimii* **1981**, *36*, 742.
- 5. Ostrowski, Z. Acta Chimica Academiae Scientiarum Hungaricae 1959, 20, 215.
- 6. Danishefsky, S. J.; Pearson, W. H. J. Org. Chem. 1983, 48, 3865.
- Craig, P. N.; Nabenhauer, F. P.; Williams, P. M.; Macko, E.; Toner, J. J. Amer. Chem. Soc. 1952, 74, 1316; Gremmen, C.; Wanner, M. J.; Koomen, G.-J. Tetrahedron Lett. 2001, 42, 8885.